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ABSTRACT

Smart home is an emerging technology for intelligently connecting
a large variety of smart sensors and devices to facilitate automa-
tion of home appliances, lighting, heating and cooling systems,
and security and safety systems. Our research revolves around
Samsung SmartThings, a smart home platform with the largest
number of apps among currently available smart home platforms.
The previous research has revealed several security flaws in the
design of SmartThings, which allow malicious smart home apps
(or SmartApps) to possess more privileges than they were designed
and to eavesdrop or spoof events in the SmartThings platform. To
address these problems, this paper leverages side-channel infer-
ence capabilities to design and develop a system, dubbed HoMonit,
to monitor SmartApps from encrypted wireless traffic. To detect
anomaly, HoMonit compares the SmartApps activities inferred
from the encrypted traffic with their expected behaviors dictated in
their source code or UI interfaces. To evaluate the effectiveness of
HoMonit, we analyzed 181 official SmartApps and performed eval-
uation on 60 malicious SmartApps, which either performed over-
privileged accesses to smart devices or conducted event-spoofing
attacks. The evaluation results suggest that HoMonit can effec-
tively validate the working logic of SmartApps and achieve a high
accuracy in the detection of SmartApp misbehaviors.
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1 INTRODUCTION

Smart home, or sometimes called home automation, is a concept of
adopting a large variety of Internet of Things (IoT) to aid control
and automation of home appliances (e.g., refrigerators, ovens and
washer/dryers), lighting, heating and cooling systems (air condi-
tioning, heaters), and various home security (e.g., entry sensors,
alarms) and safety (e.g., water, freeze, smoke detectors) systems. In
the recent years, the consumer market of smart home has experi-
enced a rapid growth. According to IHSMarkit [42], a global market
size for smart home devices is forecast to be worth $3.3 billion by
the end of 2017, reaching $9.4 billion in 2021. A survey suggests that
the revenue from the US Smart Home market amounts to $18, 877
million in 2018 with an annual growth rate of 14.8%. Besides, the
household penetration is at 32.0% in 2018 and is expected to hit
53.1% by 2022 [63].

However, today, the smart home market is still in its infancy.
Although numerous vendors have produced and marketed hun-
dreds or thousands types of smart home devices, such as smart
lights, smart switches and smart outlets, many of them can only
interact with products from the samemanufacturers. To foster inter-
vendor compatibility and encourage community-based software
development ecosystems (e.g., iOS App Store), some major play-
ers in the market have developed a few smart home platforms to
encourage manufacturers to produce compatible devices and soft-
ware developers to develop applications with a uniform abstraction
of smart devices. Prominent examples of these platforms include
Samsung’s SmartThings [52], Apple’s HomeKit [3], Google’s Brilo
and Weave [23], Vera Control’s Vera3 [13], and AllSeen Alliance’s
AllJoyn [1].

These platforms enable devices from different vendors to com-
municate through a local gateway (e.g., a hub or a base station) or
cloud backend servers. Software applications can be developed by
third-party developers to enable smart control of the devices. For
example, an application can monitor the status of one device (e.g.,
motion sensor), and trigger some actions of another device (e.g.,
turn on the light) upon receiving certain event notification (e.g., hu-
man activity). The extensibility of the framework greatly stimulates
a large number of device manufacturers and application developers
to participate in the ecosystem. One good example of such platform
is Samsung’s SmartThings. At the end of 2015, SmartThings was
the largest platform and had 521 SmartApps [19].
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Along with the popularity of smart home platforms is the in-
creasing concern on security and privacy breaches in smart home.
Particularly in the case of Samsung’s SmartThings, a recent re-
search paper has revealed several flaws in the design of Smart-
Things, which allow malicious SmartApps—applications that run in
the cloud backend and control smart devices—to not only possess
more privileges than what they have been granted by the user on
the smart devices, but also eavesdrop or even spoof events that
should only be generated by smart devices [19].

Existing solutions to SmartThings security, especially on the as-
pect ofmisbehaving SmartApp detection and prevention,mainly fall
into three categories: first, applying information flow control to con-
fine sensitive data by modifying the smart home platform [20]; sec-
ond, designing a context-based permission system for fine-grained
access control [34]; third, enforcing context-aware authorization
of SmartApps by analyzing the source code, annotation, and de-
scription [66]. However, these existing solutions either require
modification of the platform itself [20, 66], or need to patch the
SmartApps [34]. It is desirable to have a novel approach that allows
a third-party defender—other than the smart home platform ven-
dors, smart device manufacturers, and app developers—to monitor
the smart home apps without making any change to the existing
platform. However, without accessing to the smart sensors, gateway
devices, and cloud back-end servers, the only avenue that permits
the third-party monitoring is through the communication traffic,
which, however, is encrypted using industry standards. Whether
one could monitor the behavior of the smart home apps from en-
crypted traffic remains an open research question.

In this paper, we present HoMonit, a system for monitoring
smart home apps from encrypted wireless traffic. We particularly
demonstrate the concept by implementing HoMonit to work with
Samsung’s SmartThings framework and detect the misbehaving
SmartApps. At the core of HoMonit is a Deterministic Finite Au-
tomaton (DFA) matching algorithm. Our intuition is that every
smart home app’s behavior follows a certain DFA model, in which
each state represents the status of the app and the corresponding
smart devices, and the transitions between states indicate interac-
tions between the app and the devices.

To do so, HoMonit first extracts DFAs from the source code of
the apps or the text information embedded in their descriptions and
user interfaces (UI) of the SmartThings Android app. HoMonit then
leverages wireless side-channel analysis to monitor the encrypted
wireless traffic to infer the state transition of the DFA. Our key
insight is that the smart home traffic is particularly vulnerable
to side-channel analysis; the encrypted content can be inferred
by observing the size and interval of encrypted wireless packets.
ThenHoMonit applies the DFAmatching algorithm to compare the
inferred transition with the expected DFA transitions of all installed
SmartApps. If the DFA matching fails, with high probability the
behavior of the SmartApp has deviated from the expectation—a
misbehaving SmartApp is detected. Our evaluation suggests that
HoMonit can effectively detect several types of SmartApp attacks,
including over-privileged accesses and event spoofing.

We implemented HoMonit and evaluated its effectiveness in
detecting misbehaving SmartApps. Totally 60 misbehaving Smart-
Apps were developed by altering the code of open-source Smart-
Apps to perform the evaluation. The results suggest that HoMonit
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Figure 1: System architecture of SmartThings platform.

detects misbehaving SmartApps effectively: it achieves an average
recall of 0.98 for SmartApps with over-privileged accesses and an
average recall of 0.99 for SmartApps conducting event spoofing
attacks; the false positive rate is low when monitoring 30 benign
SmartApps: an average F1 score of 0.98 for ZigBee and 0.96 for
Z-Wave can be achieved.
Contributions: The contributions of the paper include:
• Novel techniques. We developed techniques for extracting DFAs
from the source code of the SmartApps or the UI of SmartThings’
mobile app, and methods for inferring SmartApp activities using
wireless side-channel analysis.

• New systems.Wedesigned, implemented and evaluatedHoMonit
for detecting misbehaving SmartApps in the SmartThings plat-
form, which operates without cooperation from the platforms,
device vendors or SmartApp developers.

• Open-source dataset. A dataset of 60 misbehaving SmartApps
will become publicly available, which can be used by researchers,
vendors and developers to evaluate their security measures.
To the best of our knowledge, our work is the first to leverage

wireless fingerprints to detect misbehaviors in a resource-constraint
IoT environment (e.g., smart home or industrial control systems).
The difficulty underlying the research problem includes the chal-
lenges of upgrading legacy equipment to eliminate vulnerabilities,
of deploying a monitoring system without modifying the existing
infrastructure, of inferring the applications’ behavior only from
the encrypted traffic. Our work may shed light on how to design a
practical misbehavior detection system in an IoT environment.

Roadmap. Sec. 2 introduces background of Samsung SmartThings.
Sec. 3 discusses the motivation of our paper and key insights. Sec. 4
highlights the overall design of HoMonit. Then, Sec. 5 discusses
DFA extraction from both open-source and closed-source Smart-
Apps. Sec. 6 elaborates the details of traffic analysis, event inference,
and DFA matching. Sec. 7 shows the evaluation result of HoMonit.
Sec. 8 discusses the potential limitation and future work. Sec. 9
summarizes the related work and Sec. 10 concludes the paper.
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2 BACKGROUND

2.1 Samsung SmartThings

As one of the most popular smart home platforms, Samsung Smart-
Things provides an attractive feature favored by many device man-
ufacturers and software developers, which is the separation of
intelligence from devices. In particular, it offers an abstraction of
a variety of lower-layer smart devices to software developers so
that the development of software programs (i.e., SmartApps) is de-
coupled with the manufacture of the smart devices. In this way,
the SmartThings platform fosters a vibrant software market, which
encourages third-party software developers to enrich the diversity
of home automation functionalities. So far, SmartThings supports
133 device types and 181 SmartApps1 in the official GitHub reposi-
tory [59]. It is conservatively estimated that at least 50 thousand
families use SmartThings in 2017 [12].

Device

Capability
Attribute

Command

Command

Command

Attribute

Figure 2: Rela-

tionship between

device and capa-

bility.

The architecture of the SmartThings
platform is shown in Fig. 1. Smart de-
vices are the key building blocks of the
entire SmartThings infrastructure. They
are connected to the hub with a variety
of communication protocols, including
ZigBee, Z-Wave, and Wi-Fi.

In SmartThings, the hub mediates the
communication with all connected de-
vices, and serves as the gateway to the
SmartThings cloud, where device han-
dlers and SmartApps are hosted. Device
handlers are virtual representations of
physical devices, which abstract away
the implementation details of the protocols for communicating to
the devices. As shown in Fig. 2, device handlers specify the capa-
bilities of these devices.

Capabilities can have commands and attributes. Commands are
methods for SmartApps to control the devices; attributes reflect
properties or characteristics of the devices. For example, smart
device Samsung SmartThings Outlet has 9 capabilities, among which
Switch and PowerMeter are themost commonly used: Switch enables
the control of the switch and it has two commands: on() and off(),
while Power Meter has one attribute power for reporting the device’s
power consumption.

2.2 Communication Protocols

The SmartThings supports a variety of communication protocols.
In particular, ZigBee and Z-Wave are typically characterized as
protocols with low power consumption, low data communication
rate and close proximity. As shown in Table 1, among the 133 smart
devices we have surveyed, ZigBee and Z-Wave are two dominant
wireless protocols in SmartThings device market, which together
contribute to about 79.7% of market share.

1Partially due to the vulnerability disclosure, the popularity of SmartThings has de-
creased since then. As of May 2017, there are only 181 SmartApps available on the
SmartThings official list [59]; over 300 SmartApps have been removed since 2016
either because of the discovered security risks or simply the lack of interests from the
users [53][61].

Table 1: Protocols supported by SmartThings devices.

Protocols Supported Devices

ZigBee 48/133 ≈ 36.1%
Z-Wave 58/133 ≈ 43.6%
Others 27/133 ≈ 20.3%

• ZigBee [2]. ZigBee is a wireless communication specification
following the IEEE 802.15.4 standard. ZigBee devices in Smart-
Things are on the 2.4GHz band with 250 kbps data rate. ZigBee
supports encrypted and authenticated communications. Encryp-
tion is enabled by default at the network layer with 128-bit AES-
CCM* encryption mode. Application Support Sublayer (APS)
also allows optional encryptionwith a link key, which is a shared
key between two devices in the same Personal Area Network
(PAN).

• Z-Wave [32]. Z-Wave is another popular low-power consump-
tion communication protocol. Z-Wave is implemented by follow-
ing the ITU-T G.9959 recommendation. It has different working
frequencies in different regions. In the United States, the Z-Wave
devices are specified to work on the frequency of 908.4MHz with
40 kbps data rate and 916MHz with 100 kbps data rate. Z-Wave
supports strong encryption and authentication via Z-Wave S2
security solution, which implements 128-bit AES encryption.

2.3 Misbehaving SmartApps

Fernandes et al. [19] presented several security-critical design flaws
in the SmartThings’ capability model and event subsystem. These
design flaws may enable the following SmartApp misbehaviors that
can lead to security compromises:
• Over-privileged accesses. The capability model of SmartThings
grants coarse-grained capabilities to SmartApps: (1) a SmartApp
that only needs a certain command or attribute of a capability
will always be granted the capability as a whole [58]; and (2) a
SmartApp that is granted permission to some capabilities of a
device can gain access to all capabilities of the devices. Hence, a
malicious SmartApp could be significantly over-privileged and
take control of a whole device even if it only asks for the permis-
sions to access partial information. For example, an auto-lock
SmartApp which only requires the lock() command of Lock ca-
pability can also get access to the unlock() command. Moreover,
even for benign SmartApps, it is still possible for the attackers to
launch command injection attacks to trick them to perform un-
intended actions. For example, in WebService SmartApps [60],
if the developers implement the HTTP endpoints using the dy-
namic method invocation feature of Groovy, the SmartApp will
be vulnerable to command injection attacks [19].

• Event spoofing. The SmartThings framework does not protect
the integrity of the events, which allows event spoofing attacks.
An event object is a data object created and processed in the
SmartThings cloud, which contains information associated with
the event, such as the (128 bit) identifiers of the hub and the
device, as well as the state information. A malicious SmartApp
with the knowledge of the hub and device identifiers, which are
easy to learn, can spoof an arbitrary event. The event will be
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deemed as legitimate by the SmartThings cloud and propagated
to all SmartApps that subscribe the corresponding capability
related to the event [19]. For example, an alarm panel SmartApp
can raise a siren alarm when the CO detector is triggered. How-
ever, an attack SmartApp can spoof a fake event for the CO
detector, causing the alarm panel SmartApp to activate the siren
alarm mistakenly.

3 MOTIVATIONS AND INSIGHTS

Given the aforementioned threats frommisbehaving SmartApps [19],
systems for mitigating such threats are of practical importance. Pre-
vious studies have proposed context-based permission systems [34],
user-centered authorization and enforcement mechanisms [66], and
systems to enforce information flow control [20]. However, these
solutions require either modification of the platform itself [20, 66],
or changes in the SmartApps [34]. A security mechanism that works
on existing platforms will be more practical as a business solution.

In this study, we propose a detection system, dubbed HoMonit,
for detecting misbehaving SmartApps in a non-intrusive manner,
by leveraging techniques commonly used in wireless side-channel
inference. HoMonit is inspired by two observations. First, most
communication protocols used in smart home environments are
designed for a low transmission rate and reduced data redundancy
for low power consumption. Second, the wireless communications
between the hub and smart devices usually show unique and fixed
patterns determined by the corresponding smart devices and Smart-
Apps. Therefore, after extracting the working logic of SmartApps
as Deterministic Finite Automatons (DFAs)—with the help of code
analysis (for open-source SmartApps) or natural language process-
ing techniques (for closed-source SmartApps)—an external observer
can determine which SmartApp is operating and which state this
SmartApp is currently in by monitoring only the meta data (e.g.,
the packet size or inter-packet timing) of the encrypted wireless
traffic. If a SmartApp deviates from its usual behavior, the pattern
of wireless traffic will also change, which can be utilized to detect
misbehaving SmartApps.

The capability of monitoring misbehaving SmartApps from en-
crypted traffic enables a third-party defender—other than the smart
home platform vendors, smart device manufacturers and SmartApp
developers—to develop a smart home anomaly detection system
to detect misbehaving SmartApps at runtime. A major advantage
of a third-party defense mechanism is that no modification of the
protected platform is needed. HoMonit is designed to work with-
out the need of changing the current SmartThings infrastructure,
or changing the system software on the hub or smart devices, or
modifying the SmartApps. HoMonit can work directly with the
existing SmartThings platform, and is easily extensible to other
platforms with similar infrastructures.

We illustrate this idea using a concrete example: Brighten My
Path is a SmartApp for automatically turning on the outlet after
a motion has been detected by the motion sensor. We show the
observed packet sizes of the communications between the sensors
and the hub in Fig. 3, in which the y-axis shows the packet sizes and
the x-axis shows the timestamps of the packets when they arrive.
The SmartApp subscribes to two capabilities, which include an
attribute motion for capability Motion Sensor and a command on()
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Figure 3: A motivating SmartApp: Brighten My Path.

for capability Switch. In Fig. 3, motion.active corresponds to packet
sequence (54 ↑) and switch.on corresponds to packet sequence
(50 ↓, 47 ↓, 47 ↓, 52 ↓), where ↓means the packet is hub-to-device
and ↑means device-to-hub. The DFA consists of three states, which
are connected by two transitions (as shown in Fig. 3). If the events
corresponding to motion.active and switch.on are detected in a se-
quence, the DFA will transition from the start state to the accept
state. Thus, the behavior of the SmartApps can be inferred from the
DFA transitions: normal behavior sequences are always accepted
by the DFA, whereas abnormal ones are not.

4 DESIGN OVERVIEW

4.1 Threat Model

In this paper, we consider attackers who are capable of exploiting
the vulnerabilities of a benign SmartApp to perform tasks that de-
viate from the original design goals (i.e., benign DFA). Similar to
the attack model in [19], the attacker-controlled SmartApp could
misbehave by (1) performing over-privileged accesses to gain con-
trol of the smart devices in ways that are not prescribed by its
intended functionality; or (2) performing event spoofing to alter the
behaviors of other SmartApps that are installed by the same user.
As shown in [19], the proof-of-concept attacks include door lock
pin code snooping attack and fake alarm attack. The SmartApps
from SmartThings Marketplace and SmartThings Public GitHub
Repository [59] are assumed to be trusted and can be used to extract
the benign DFA. It is important to point out that vulnerabilities de-
tection of a SmartApp by analyzing its source code is an important
research topic [19, 66], which deserves the separate researches and
thus is out of the scope of this work. In this study, we do not con-
sider the attacks towards smart home hardware or system software
(e.g., smart devices or hubs).

4.2 Design Challenges

To design and implement a smart home anomaly detection system
using wireless side-channel inference techniques, we must address
the following research challenges, including:
• How to automatically extract the control logic (i.e., the DFA) of
both open-source and closed-source SmartApps?

• How to automatically capture wireless traffic (e.g., ZigBee and
Z-Wave) in smart home environments and conduct side-channel
inference to detect SmartApp misbehaviors?
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Figure 4: Workflow of HoMonit.

• How to evaluate detection accuracy in a real-world smart home
setting?

4.3 System Overview

To address these design challenges, we present HoMonit, a system
to monitor behaviors of smart devices using side-channel informa-
tion from the encrypted wireless traffic. The smart home network
is centralized by the hub, which connects to all of the smart devices
via wireless communications (e.g., ZigBee or Z-Wave), and to the
cloud backend via Internet. HoMonit is equipped with multiple
wireless interfaces to collect the wireless packets including both
ZigBee and Z-Wave packets. In practice, the eavesdropping devices
should be put near the hub to ensure that the wireless packets can
be correctly collected.

As illustrated in Fig. 4, HoMonit system is comprised of two ma-
jor components. The SmartApp Analysis Module (detailed in Sec. 5)
extracts the expected DFA logic of the installed SmartApps from
the their source code (for open-source SmartApps) or their text de-
scription (for closed-source SmartApps). The Misbehavior Detection
Module (detailed in Sec. 6) identifies the misbehavior of the Smart-
Apps by conducting side-channel inference on the sniffed wireless
traffic and comparing the inferred behavior with the expected DFA
models.

5 DFA BUILDING VIA SMARTAPP ANALYSIS

The SmartApp Analysis Module aims to extract the expected behav-
iors of the SmartApps. We utilize the Deterministic Finite Automa-
ton (DFA) to characterize the logic of SmartApps. Considering the
stateful nature of web applications (especially for smart home apps)
[10], we choose DFA to represent a SmartApp for two reasons: (1)
a SmartApp supervises a finite number of devices, and (2) devices
are driven into a deterministic status by the SmartApp when a
specific condition is satisfied. More specifically, we formalize the
SmartApp DFA as a 5-tupleM = (Q, Σ,δ ,q0, F ), whereQ is a finite
set of states of the SmartApp; Σ is a finite set of symbols, which
correspond to attributes or commands of their capabilities; δ is the
transition function inQ × Σ → Q , whereQ × Σ is the set of 2-tuple
(q,a) with q ∈ Q and a ∈ Σ; q0 is the start state, and F is a set of
accept states.

Some SmartApps are open-source while others are closed-source.
For open-source SmartApps, HoMonit performs static analysis on

1 definition(
2 name: "Smart Light", namespace: "com.example",
3 author: "example", category: "Convenience",
4 description: "Turn light on when motion detected."
5 )

7 preferences {
8 section("When there is movement...") {
9 input "themotion", "capability.motionSensor",
10 title: "Select a motion sensor"
11 }
12 section("Turn on a light...") {
13 input "theswitch", "capability.switch",
14 title: "Select a light"
15 }
16 }

18 def installed() {
19 subscribe(themotion, "motion.active", motionHandler)
20 }

22 def updated() {
23 unsubscribe()
24 subscribe(themotion, "motion.active", motionHandler)
25 }

27 def motionHandler(evt) {
28 theswitch.on()
29 }

Figure 5: A SmartApp code example: Smart Light.

their source code and automatically translates them into DFAs. For
closed-source SmartApps, HoMonit leverages both the descrip-
tions of the SmartApps and texts embedded in the user interface (UI)
of the SmartThings Android app to extract the logic of the Smart
Apps and build the DFA. We analyzed 181 open-source SmartApps
to built their DFAs from SmartThings Public GitHub Repository [59].
All of them are official open-source SmartApps. Moreover, 36 out
of the 52 SmartApps (69.2%) in SmartThings Marketplace as of Jan.
2018 were included in the dataset.

5.1 DFA Building for Open-source Apps

Since the open-source SmartApps are written in Groovy, to extract
their logic, we conducted a static analysis on the source code using
AstBuilder [15]. Fig. 5 shows an example of the source code of a
SmartApp. HoMonit converts the source code of the SmartApp
into an Abstract Syntax Tree (AST) during the Groovy compilation
phase.

The translation from an AST to a DFA is completed in two steps.
First, to obtain the set of symbols (i.e., Σ of the DFA), HoMonit
extracts the capabilities requested by the DFA from the preferences
block statement (Fig. 5, line 7). Specifically, all available capabilities
are first obtained from the SmartThings Developer Documenta-
tion [58], and then the input method calls (Fig. 5, line 9 and 13) of
the preferences block statement are scanned to extract the capabili-
ties requested by the SmartApp. SmartApps use subscribe methods
to request notification when the device’s status has been changed;
these notification will trigger the handler methods to react to these
status changes. To further determine the specific commands or
attributes (i.e., symbols of the DFA), HoMonit scans the subscribe
methods and their corresponding commands or attributes (e.g., mo-
tion.active in the subscribe method).

The second step is to extract the state transitions (i.e., δ ) from
subscribe and handler methods. HoMonit starts from the subscribe
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method call in installed and updated block. Each subscribe method
in these blocks indicates one transition from the start state to an
intermediate state; by inspecting the corresponding handler method,
how the intermediate state will transition to other states can be
determined: in the example shown in Fig. 5, one transition (with
switch.on as its symbol) moves the DFA to an accept state. Complex
handler methods may involve multiple states and transitions before
the DFA reaches the accept states. The set of states Q, start state
q0, and accept states F in the DFA are automatically constructed
according to the transition function.

The DFAs for 150 out of 181 SmartApps were successfully con-
structed (82.9%). The DFA construction failed on some SmartApps
because they request capabilities that are not associated with any
device. The success rate is already very high considering that some
SmartApps are much more complex than the one listed in Fig. 5.
There were complex apps with over 28 states and 40 transitions
in their DFAs in the dataset, and these DFAs could all be success-
fully extracted and further used in detection. Most of the popular
SmartApps can be successfully constructed. More specifically, since
SmartThings has not provided official data about app downloading
statistics, the 52 SmartApps in SmartThings Marketplace can be
regarded as the most popular apps. Among these 52 SmartApps, 36
are open-source and the remaining 16 are closed-source. Among
the 36 open-source apps, we have successfully constructed DFAs
for 32 apps. The reason of these 4 failure cases is that the work-
ing logic of these SmartApps cannot be modeled as DFAs. Take
a SmartApp Severe Weather Alert as an example, it only acquires
weather information from Internet and sends weather alert to user
smartphone; a meaningful DFA cannot be constructed.

5.2 DFA Building for Closed-source Apps

The static code analysis approach can only be applied to open-
source SmartApps. For the closed-source SmartApps, HoMonit
builds the DFA by analyzing the text information of SmartApps.
Compared to Tian et al. [66] who extracted the security policies of a
SmartApp from its text description using NLP techniques by lever-
aging knowledge of source code, extracting DFA without source
code, as is the case in our scenario, is more challenging, since the
descriptions of the SmartApps are usually quite simple (e.g., only
one sentence). As such, we instead leverage the text embedded in
the user interface of the SmartThings mobile app to extract the logic
of the SmartApp to build its DFA. In particular, our NLP-based anal-
ysis is comprised of the following three steps: (1) text extraction,
(2) symbol inference, and (3) DFA building.

5.2.1 Text Extraction. Fig. 6 shows the UI of an example Smart-
App in the SmartThings Android app, which prompts the user to
grant the SmartApp permission to access the devices. This inter-
face is closely related to the preferences block statement, which is
unknown to us. To extract the same information as we did from the
source code, HoMonit first converts the UI hierarchy into an XML
file by using uiautomator (an adb command on Android platform).
HoMonit then traverses all XML nodes and extracts the string val-
ues of the text attributes in related nodes. For example, a sentence
“When water is sensed” can be extracted from the XML node
<node index="0" text="When water is sensed"
resource-id="com.smartthings.android:id/title">.

Figure 6: DFA building through UI analysis.

5.2.2 Symbol Inference. To extract the set of symbols in the DFA
(i.e., Σ), we need to infer associated commands or attributes of
capabilities from the extracted text. The SmartThings Developer
Documentation [58] defines 72 capabilities and the task of sym-
bol inference is to select the correct one from the 72 candidates.
However, directly applying NLP techniques is difficult, because
text descriptions for SmartApps require a unique language model.
For example, Contact Sensor capability implies physical touching
of subjects, rather than inter-personal communication. Therefore,
making inference based on generic language models is not accu-
rate. Moreover, training a new model from the 346 sentences we
extracted from the 181 SmartApps did not lead to acceptable in-
ference results. As such, we perform an additional candidate set
reduction step before applying NLP techniques.

Particularly, when the UI interface shown in Fig. 6 prompts the
user to select devices that have the corresponding capability re-
quested by the SmartApp, we can leverage the provided device
list to narrow down our candidates, because all the devices in
the list must contain that capability. Suppose there are n capa-
bilities, denoted as Cj (1 ≤ j ≤ n), andm devices, denoted as Di
(1 ≤ i ≤ m). A device Di can further be abstracted as a set of
capabilities, Di = {Ci1,Ci2, . . . ,Cik }. For a given unknown capa-
bility c , we can obtain a list of devices Lc through the UI of the
SmartApp, which can be utilized to obtain a reduced candidate set
R: R = {Cu |Cu ∈ Dv for all Dv ∈ Lc }.

As the target capability c must be in R, if |R | is small, we are
able to reduce our candidates significantly before applying the NLP
technique. To show the extent to which the candidate capabilities
can be reduced, we created 221 virtual devices by enumerating
all device handlers obtained from the SmartThings Public GitHub
Repository. There were 52 capabilities in total2. For each capability,
we used the method mentioned above to create a candidate set R.
We found that |R | is only 1 for 28 out of the 52 capabilities, which
means that 53.8% of the capabilities can be correctly inferred even
without using NLP techniques. The average value of |R | for all 52
capabilities is only 2.27, which means that given the list of devices
that support the requested capability, the candidate set is quite
small.

We then useNLP analysis to perform symbol inference. HoMonit
uses NLTK (Natural Language Toolkit) [7] to extract the noun

2The rest capabilities are only documented but not used by the device handlers in the
repository.
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phrases and verb phrases in a sentence. Capabilities are often re-
lated to the noun phrases in the text. For example, word water may
be related to Water Sensor capability. Then HoMonit compares
the noun phrases with capability candidate set and uses text sim-
ilarity (estimated by Word2Vec [45]) to determine the requested
capability. As noun phrases in SmartThings usually have special
meanings, we combine Word2Vec with a model trained with the
API documentation of SmartThings.

After learning the requested capabilities, the next step is to find
out the exact attributes or commands of the capability. We first
obtain the possible attributes and commands of each capability
from the official documentation [56], and analyze the verb phrases
to conduct the inference. In particular, we use Word2Vec to analyze
the context of the verb phrases. For example, for Switch capability,
there are two commands: on() and off(), and the verb phrase turn
on is more likely to be linked to the on() command. However, some
verb phrases do not clearly indicate which status of command it
stands for. In this situation, we use NLTK to understand the context
of the verb phrases and determine if it links to the common or
uncommon device status. For example, in a sentence “when water
is sensed”, it is difficult to determine whether it refers to the wet
value or the dry value of water attribute. But since the wet status
is uncommon, “when water is sensed” is more likely related to the
wet value of water attribute. We conducted an empirical evaluation
to show the effectiveness of our approach. In the experiment, the
inference result with the similarity score lower than a threshold
(0.9) is deemed as undecided, which need to be further analyzed
using our NLP-based approach. In our dataset, 71 undecided cases
were found out of the total 1207 samples. Using our approach, in 63
of these 71 undecided cases (88.7%), the device status with unclear
verb phrases can be correctly inferred.

5.2.3 DFA Building. Since the set of symbols has been inferred,
the remaining tasks of building the DFA is primarily constructing
δ . This can be done by chaining the symbols according to the text,
which describes the logical relationship of these symbols in the UI.
For example, in Fig. 6, the text descriptions of the two symbols con-
stitute a successive logical relationship: “When there is movement,
turn on a light”. Thus we chain these two symbols following the
order in the UI. When such text information is not available in the
UI, we analyzed the description of the SmartApp as what they did
in [66]. The remaining steps of DFA construction, i.e., constructing
Q , q0, and F , are similar to those in Sec. 5.1.

Because we have no ground truth of the working logic of closed-
source SmartApps, to evaluate the effectiveness of our method, we
treated the 150 open-source SmartApps that we can successfully ex-
tract DFAs from their source code in Sec. 5.1 as closed-source Smart-
Apps and conducted the evaluation. We have successfully built
the DFAs of 122 out of 150 (81.3%) SmartApps using our method.
Among the 28 SmartApps whose DFAs we failed to build, we could
correctly infer the symbols of 15 SmartApps, but the order of the
transitions were misplaced. We could not construct the symbols for
the remaining 13 SmartApps.

5.2.4 Impact of UI design on DFA generation. Although the DFA
generation procedure described above heavily depends on the UI
design of the SmartThings mobile apps, it should be pointed out that
the UI layout is constrained by the rules defined by SmartThings

platform [57]. Therefore, any complying UI layout can be used
for DFA generation. In our dataset, a UI always conforms to the
app control logic. For example, the user interfaces of SmartApps
Turn It On When It Opens and Undead Early Warning are quite
similar, differing only slightly in the prompting sentences. As a
result, our NLP-based approach will generate the same DFA for
both SmartApps, which correctly reflects their actual control logic.

6 DETECTING APP MISBEHAVIORS BASED

ONWIRELESS TRAFFIC FINGERPRINT

6.1 Traffic Collection

HoMonit collects both ZigBee and Z-Wave traffic between the hub
and the smart devices. Our study suggests that these two standards
are used by about 79.7% smart home devices on the market (Table 1).

6.1.1 ZigBee Traffic Collection. To sniff the ZigBee traffic, HoMonit
employs a commercial off-the-shelf ZigBee sniffer (i.e., Texas Instru-
ments CC2531 USB Dongle [30]) and an open-source software tool
(i.e., 802.15.4 monitor [46]) to passively collect the ZigBee traffic.
ZigBee breaks the 2.4GHz band into 16 channels, where Smart-
Things hub and its devices are on a fixed channel (0xe in our case).
We customized the 802.15.4 monitor to achieve the real-time packet
capturing. The captured packets were dumped to a log file once per
second.

6.1.2 Z-Wave Traffic Collection. HoMonit adopts Universal Soft-
ware Radio Peripheral (USRP) hardwares to collect Z-Wave packets
and modifies an open-source software, Scapy-Radio [14], to auto-
matically record them. It is worth noting that some Z-Wave devices
may communicate with the hub at different channel frequencies
in different modes (e.g., sleep or active mode). Take the alarm sen-
sor Aeotec Siren (Gen 5) as an example. The device communicates
with the hub in sleep mode at the frequency of 908.4MHz with a
transmission rate of 40kbps, but communicates at the frequency of
916MHz with a transmission rate of 100kbps rate in the activemode.
As such, to monitor two channels simultaneously, we exploited two
USRPs working at the above two frequencies to capture all Z-Wave
traffic.

6.2 Event Inference

6.2.1 Filtering Noise Traffic. The collected wireless traffic contains
packets that are considered noise for our event inference, which
must be filtered out.
• Beacon packets. Beacon packets are mainly used for acknowledg-
ing data transmission and maintaining established connection,
which carry less side-channel information. HoMonit discards
ZigBee beacon packets, and drops Z-Wave packets with no pay-
load.

• Retransmission packets. Retransmission packets will be sent in
cases of transmission failure. In ZigBee, they can be identified
by checking if two subsequent packets share the same sequence
number. In Z-Wave, retransmission packets can be identified if
two consecutive packets sent by the sending device are observed
without having a response packet in between.

• Unrelated traffic. Traffic from devices using other wireless stan-
dards (e.g., WiFi and Bluetooth) or from other networks are
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Table 2: Fingerprints for event types that supported by 7 ZigBee devices and 4 Z-Wave devices.

Event Name Device Name Protocol Fingerprint

water.wetA
Samsung SmartThings Water Leak Sensor ZigBee

54 ↑ 45 ↑

water.dry 54 ↑ 45 ↑

temperature 53 ↑ 45 ↑

motion.active
Samsung SmartThings Motion Sensor ZigBee

54 ↑

motion.inactive 54 ↑

temperatureB 53 ↑ 45 ↑

switch.onC Samsung SmartThings Outlet ZigBee 50 ↓ 47 ↓ 47 ↓ 52 ↓

switch.off 50 ↓ 47 ↓ 47 ↓ 52 ↓

contact.openD

Samsung SmartThings Multipurpose Sensor (2016) ZigBee

54 ↑

contact.closed 54 ↑

acceleration.active 69 ↑ 65 ↑ 65 ↑ 65 ↑ · · ·

acceleration.inactive Occur after event acceleration.active finishes
temperature 53 ↑

contact.open

Samsung SmartThings Multipurpose Sensor (2015) ZigBee

54 ↑ 45 ↑

contact.closed 54 ↑ 45 ↑

acceleration.activeE 69 ↑ 65 ↑ 65 ↑ 65 ↑ · · ·

acceleration.inactive Occur after event acceleration.active finishes
temperature 53 ↑ 45 ↑

beepF

Samsung SmartThings Arrival Sensor ZigBee

50 ↓ 45 ↓

rssiG 52 ↑

presence.presentH 57 ↑ 48 ↑ 45 ↑ 45 ↑ 49 ↑ 45 ↑ 50 ↑ 45 ↑ 50 ↑ 45 ↑ 50 ↑ 45 ↑

presence.not present Occur after there is no periodic event rssi
switch.onI

Osram Lightify CLA 60 RGBW ZigBee

50 ↓ 47 ↓

switch.off 50 ↓ 47 ↓

illuminance J 53 ↓ 47 ↓

setColorTemperatureK 54 ↓ 47 ↓ 52 ↓ 47 ↓

setColorL 50 ↓ 47 ↓ 54 ↓ 47 ↓ 52 ↓ 47 ↓ 52 ↓ 47 ↓

switch.on Power Monitor Switch (TD1200Z1) Z-Wave 13 ↓ 12 ↓ 10 ↓

switch.off 13 ↓ 12 ↓ 10 ↓

motion.active Aeotec MultiSensor 6 Z-Wave 14 ↑ 21 ↑

motion.inactive 14 ↑ 21 ↑

contact.open Aeotec Door/Window Sensor 6 Z-Wave 17 ↑ 17 ↑

contact.closed 17 ↑ 17 ↑

alarm.siren Aeotec Siren (Gen 5) Z-Wave 13 ↓ 34 ↓ 11 ↓ 33 ↓ 11 ↓ 21 ↓ 11 ↓

treated as unrelated traffic. To identify traffic from targeted
networks, ZigBee uses a unique identifier called Personal Area
Network Identifier (or PANID for short) while Z-Wave uses
Home ID, which denotes the ID that the Primary Controller
assigns the node during the inclusion process [28]. HoMonit
filters out collected traffic that has different PANIDs or Home
IDs from the specified ones.

6.2.2 Fingerprinting Events. We formally denote an event as Eϕt ,
which indicates that the event is of type ϕ and is generated at time
t . An event type ϕ is a 2-tuple (d, e), where d is the device and e is
a command sent to d or an attribute of d . We denote the set of all
event types as Φ.

Each event will trigger a sequence of wireless packets. We denote
a wireless packet as a quadruple f = (t , l ,di ,dj ), where f refers
to the packet of length l sent from device di to device dj at time t .
Here, di and dj are represented using the MAC addresses in ZigBee
or node IDs in Z-Wave. Once an event is triggered, a sequence of
n packets sent between device di and dj at a specific time t can
be monitored during a short interval, which can be represented
as Sdi↔dj

t = (f1, f2, . . . , fn ). Note that either di or dj is the hub
because the SmartThings framework dictates all the devices com-
municate with the hub. If packets for multi-hop communications
are captured, HoMonit merges these consecutive packets from

multiple hops into a single one. Therefore, there is typically a one-
to-one mapping between an event Eϕt and a sequence of packets,
S
di↔dj
t .
For each event type ϕ ∈ Φ, we manually trigger the event and

collect m samples (m = 50), denoted as Sϕ = {S
ϕ
1 , S

ϕ
2 , . . . , S

ϕ
m },

where S
ϕ
i is a sequence of packets collected in one experiment

when the event is triggered. The fingerprint F ϕ of event type ϕ is
defined as

F ϕ = argmin
Sϕi ∈Sϕ

1
∥Sϕ ∥

∑
∀Sϕj ∈Sϕ

dist(S
ϕ
i , S

ϕ
j ),

where dist(Sϕi , S
ϕ
j ) adopts Levenshtein Distance [8] to measure the

sequence similarity between S
ϕ
i and S

ϕ
j , i.e., a small dist(Sϕi , S

ϕ
j )

means a high similarity between Sϕi and Sϕj . In Table 2, we illustrate
the fingerprints of 34 different types of events of all devices we
possess (including seven ZigBee devices and four Z-Wave devices,
as listed in Table 3). Numeric values are size of the packets, and
arrows indicate their directions.

To validate the uniqueness of the event fingerprints, we calcu-
late the pairwise Levenshtein Distance between the fingerprints
of different event types and their 50 event samples collected from
all devices we possess. In Fig. 7, we illustrate the distance measure
for 12 types of ZigBee events available on these seven devices, and
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Figure 7: Levenshtein ratio for 12 types of ZigBee events

available on 7 devices.

the event names are marked in Table 2. More specifically, each cell
of the table shows the Levenshtein Ratio [48], which is the result
after normalizing average dist(Sϕi ,F

ϕ
j ). A high Levenshtein Ratio

means a high sequence similarity. It is observed that the finger-
prints of the same event are quite stable and consistent: the average
Levenshtein Ratio is 0.98 for ZigBee and 0.98 for Z-Wave; and the
fingerprints from different events are clearly distinguishable: the
average Levenshtein Ratio is 0.17 for ZigBee and 0.25 for Z-Wave.
The uniqueness of event fingerprints suggests that fingerprinting
SmartThings events is feasible.

6.2.3 Inferring Events. To infer the events based on the captured
wireless packets, HoMonit first partitions the traffic flow into a
set of bursts. A burst is a group of network packets in which the
interval between any two consecutive packets is less than a pre-
determined burst threshold [65]. The packets in each burst are then
ordered according to the timestamps and the burst is represented
as Sdi↔dj

t . HoMonit matches the burst with the fingerprints of
each of the known events by calculating their Levenshtein Distance,
dist(S

di↔dj
t ,F ϕ ). The event type with the smallest Levenshtein

Distance from the packet sequence is considered as the inferred
event.

As shown in Table 2, there are more than one events with exactly
the same patterns (e.g., packet size and direction). To correctly
identify the event, we classify them into two categories:
• Events of the same event type. One example is switch.on and
switch.off of Samsung SmartThings Outlet. The reason is that
they are essentially the same event message with different data
fields. As these events typically exist in pairs, such as on and
off, active and inactive, wet and dry, we use one bit to trace the
current state of each device to differentiate these events.

• Events of different event types. One example is water.wet of Sam-
sung SmartThings Water Leak Sensor and contact.open of Sam-
sung SmartThings Multipurpose Sensor (2015). We first use
other unique events to identify the device, then determine the

(a) ZigBee sniffer: Texas Instruments CC2531
USB Dongle.

(b) Four tested Z-Wave devices.

(c) Z-Wave sniffer: two USRPs at 908.4MHz
and 916MHz.

(d) Seven tested ZigBee devices.

Figure 8: Wireless sniffers and smart devices.

event type. For example, if we captured acceleration.active, then
we know that this device is Samsung SmartThings Multipurpose
Sensor (2015). Therefore, the event type must be contact.open
instead of water.wet.

6.3 SmartApp Misbehavior Detection

To detect misbehaving SmartApps, HoMonit aims to propose the
DFA matching algorithm. In particular, the SmartApp misbehavior
detection module serves as an intrusion detection system (IDS)
that monitors the smart home wireless network for misbehaving
SmartApps. This module passively sniffs the wireless traffic be-
tween SmartThings hub and devices and tries to match it with
current SmartApps working logic. An alarm will be raised once the
verification fails.

Formally, the input of the algorithm is a sequence of events
E = {E

ϕ1
t1 ,E

ϕ2
t2 , . . . ,E

ϕn
tn } that is inferred from the encrypted wire-

less traffic, and the DFAM = (Q, Σ,δ ,q0, F ) of the target SmartApp.
The algorithm transitions the DFA from state Si to Si+1 by consum-
ing each of the events Eϕiti in the order they appear in the sequence,

if Eϕiti ∈ Σ∧δ (Si ,E
ϕi
ti ) = Si+1 ∈ Q . Initially, S0 = q0. If the sequence

of events finally transitions the DFA into one of the accept states,
that is, Sn ∈ F , the behavior of the SmartApp is accepted; otherwise
a misbehaving SmartApp is detected.

In this work, we focus on detecting over-privilege and spoofing
misbehavior of SmartApps. Since we assume the original SmartApp
is benign, we aim to detect the misbehavior with DFA matching
method. The over-privilege problem occurs due to coarse-grained
permission control, which will raise extra device event compared
with the original SmartApps. This misbehavior can be detected
when there are new transitions detected in the DFA. The spoofing
problem occurs due to being notified of fake events generated by
other malicious SmartApps. Thus misbehavior can be detected
when there is partial DFA matching (skipped states are resulted
from spoofed events in the cloud). We will give detection details in
following evaluation section.
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Table 3: SmartApps used in the evaluation.

SmartApp Protocol Devices Pre Rec F1

Lights Off When Closed ZigBee Samsung SmartThings Multipurpose Sensor (2015), Osram Lightify CLA 60 RGBW 1.00 0.90 0.95
Turn It On When It Opens ZigBee Samsung SmartThings Multipurpose Sensor (2016), Samsung SmartThings Outlet 1.00 0.95 0.97

Darken Behind Me ZigBee Samsung SmartThings Motion Sensor, Osram Lightify CLA 60 RGBW 1.00 0.95 0.97
Let There Be Light ZigBee Samsung SmartThings Multipurpose Sensor (2015), Osram Lightify CLA 60 RGBW 1.00 0.95 0.97
Monitor On Sense ZigBee Samsung SmartThings Multipurpose Sensor (2016), Samsung SmartThings Outlet 1.00 0.80 0.89

Big Turn On ZigBee Samsung SmartThings Outlet 1.00 1.00 1.00
Big Turn Off ZigBee Samsung SmartThings Outlet 1.00 1.00 1.00

Presence Change Push ZigBee Samsung SmartThings Arrival Sensor 1.00 1.00 1.00
Door Knocker ZigBee Samsung SmartThings Multipurpose Sensor (2016) 1.00 0.95 0.97

Let There Be Dark ZigBee Samsung SmartThings Multipurpose Sensor (2015), Osram Lightify CLA 60 RGBW 1.00 0.80 0.89
Flood Alert ZigBee Samsung SmartThings Water Leak Sensor 1.00 1.00 1.00

Turn It On When I’m here ZigBee Samsung SmartThings Arrival Sensor, Samsung SmartThings Outlet 1.00 1.00 1.00
The Gun Case Moved ZigBee Samsung SmartThings Multipurpose Sensor (2015) 1.00 1.00 1.00

It Moved ZigBee Samsung SmartThings Multipurpose Sensor (2016) 1.00 1.00 1.00
Light Follows Me ZigBee Samsung SmartThings Motion Sensor, Osram Lightify CLA 60 RGBW 1.00 0.95 0.97

Undead Early Warning ZigBee Samsung SmartThings Multipurpose Sensor (2016), Osram Lightify CLA 60 RGBW 1.00 0.90 0.95
Cameras On When I’m Away ZigBee Samsung SmartThings Arrival Sensor, Samsung SmartThings Outlet 1.00 0.95 0.97

Brighten My Path ZigBee Samsung SmartThings Motion Sensor, Osram Lightify CLA 60 RGBW 1.00 1.00 1.00

Dry The Wetspot ZigBee Samsung SmartThings Water Leak Sensor, Samsung SmartThings Multipurpose
Sensor (2016) 1.00 0.95 0.97

Curling Iron ZigBee Samsung SmartThings Motion Sensor, Samsung SmartThings Arrival Sensor, Samsung
SmartThings Outlet 1.00 1.00 1.00

Big Turn On Z-Wave Power Monitor Switch (TD1200Z1) 1.00 0.90 0.95
Brighten My Path Z-Wave Aeotec MultiSensor 6, Power Monitor Switch (TD1200Z1) 1.00 0.85 0.92
Darken Behind Me Z-Wave Aeotec MultiSensor 6, Power Monitor Switch (TD1200Z1) 1.00 0.85 9.92
Forgiving Security Z-Wave Aeotec MultiSensor 6, Aeotec Siren (Gen 5), Power Monitor Switch (TD1200Z1) 1.00 0.90 0.95
Let There Be Dark Z-Wave Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1) 1.00 0.95 0.97
Let There Be Light Z-Wave Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1) 1.00 0.95 0.97
Light Follows Me Z-Wave Aeotec MultiSensor 6, Power Monitor Switch (TD1200Z1) 1.00 0.90 0.95

Lights Off When Closed Z-Wave Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1) 1.00 0.95 0.97
Smart Security Z-Wave Aeotec MultiSensor 6, Aeotec Siren (Gen 5), Aeotec Door/Window Sensor 6 1.00 1.00 1.00

Turn It On When It Opens Z-Wave Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1) 1.00 0.95 0.97

7 EVALUATION

To evaluate the effectiveness and efficiency of HoMonit, we built a
prototype systemwith the off-the-shelf hardware: a laptop equipped
with wireless sniffer interfaces, including a Texas Instruments
CC2531 USB Dongle for ZigBee and two USRPs for Z-Wave, as
shown in Fig. 8(a) and Fig. 8(c). The distance between the Smart-
Things hub and HoMonit was about 7 feet. As listed in Table 3, we
chose 30 SmartApps from the SmartThings Public GitHub Repos-
itory [59], which interact with, in total, 7 ZigBee devices and 4
Z-Wave devices, as shown in Fig. 8(b) and Fig. 8(d). The devices
were located in less than 33 feet away from the hub within a room
of 200 square feet.

7.1 Micro-benchmark: Inference of Events and

SmartApps

In this section, we evaluate the accuracy of inferring the SmartApps
installed in the smart home environment from the sniffed wireless
traffic. Although it is not the design goal of HoMonit (because
we already assume the knowledge of the installed SmartApps), the
accuracy of SmartApps inference measures the basic capability of
DFA construction and DFA matching. Therefore, we use a set of
SmartApp inference tests as micro-benchmarks. We also discuss
the impact of a few key parameters of HoMonit, including the
burst threshold and sniffer distance and wireless obstacles, on the
accuracy of SmartApp inference.

7.1.1 Determining the Burst Threshold. The burst threshold is a
parameter used to cluster captured wireless packets for the same
event, which directly impacts the effectiveness of SmartApp in-
ference. We performed the following experiments: we randomly
selected 4 ZigBee devices and another 4 Z-Wave devices. We manu-
ally triggered each event type for 50 times on each of the 8 devices.
The time intervals between two consecutive events were 3 to 10
seconds. We measured the accuracy of SmartApp inference when
the burst threshold was selected as integer values from 0 to 10
seconds. The precision of the inference is defined as the fraction of
correctly inferred events over all inferred events; the recall of the
inference is defined as the fraction of successfully inferred events
over all events that have been triggered. The F1 score is simply the
harmonic mean of precision and recall.

As shown in Fig. 9(a), the F1 score of event inference achieves
the maximum when the burst threshold is 1s. This is because a
smaller burst threshold separates the packets belonging to the same
events, which may cause more events being inferred than what we
actually triggered; and a larger burst threshold groups unrelated
packets, which may cause some events being missed by the detector.
Therefore, in the remainder of our evaluation, the burst threshold
was chosen as 1s.

7.1.2 SmartApp Inference Accuracy. We chose 20 SmartApps that
work with ZigBee devices and 10 SmartApps connecting Z-Wave
devices (listed in Table 3). Each SmartApp is invoked by manually-
triggered events 20 times. During the experiment, the sniffer was
placed 6 feet away from the hub and the burst threshold was set
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(a) Evaluation of burst threshold. The
y-axis shows the F1 score of event in-
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Figure 9: Micro-benchmark: accuracy of event and Smart-

App inference.

to 1s. Table 3 contains the evaluation results for each individual
SmartApp. Similar to event inference, here the precision is defined
as the number of correctly inferred SmartApp invocation over
the total number of inferences made; the recall is defined as the
number of successfully inferred SmartApp invocation over the 20
invocation of each SmartApp. It is worth noting that the precisions
for all SmartApps are 1.00, while the recalls are sometimes lower
than 1.00. An average F1 score of 0.98 for ZigBee SmartApps and
0.96 for Z-Wave SmartApps were achieved. Among all 30 tested
SmartApps, the F1 scores of 26 are at least 0.95 (see Table 3). This
shows that HoMonit can accurately capture the working logic of
SmartApps through DFA matching. It is also important to point out
that the major factors contributing to the false inference come from
the packet loss, unrelated wireless traffic, or traffic jam splitting a
burst.

7.1.3 Impact of Distance and Wireless Obstacles. In practice, the
effectiveness of SmartApp inference may be affected by the envi-
ronmental conditions, such as the distance between the sniffer and
the devices and various wireless obstacles (e.g., walls) that block the
wireless signals. Thus, we evaluated the effectiveness of SmartApp
inference with different distances and wireless obstacles: (1) 6 feet
without walls; (2) 16 feet with 1 wall; and (3) 33 feet with 2 walls.
As shown in Fig. 9(b), although the recalls of the inference drop
with longer distance and more wireless obstacles, in all three cases
the recalls are above 0.88; the precisions are all 1.00; and the F1
scores are all above 0.94.

7.2 Detection of Over-privileged Accesses

We first developed over-privileged versions of the original benign
SmartApps by adding malicious code to cause unintended opera-
tions. We used modified SmartApps to evaluate because there is no
existing public malware dataset for SmartThings platform. We de-
veloped the misbehaving SmartApps following [19]. HoMonit will
detect any malware that has over-privilege and spoofing problems.
For example, a SmartApp named Brighten My Path, which is used
to turn the light on when motion is detected, only requires on()
command of switch capability according to its description. We de-
veloped an over-privileged version of this SmartApp in either of the
two ways: (1) illegally obtaining accesses to off() command; (2) ille-
gally gaining accesses to all the capabilities of the devices for which

the user grants the SmartApp only switch capability. We selected 20
SmartApps that work with different categories of ZigBee devices
and 10 SmartApps for Z-Wave devices (listed in Table 3). By follow-
ing the above example, in total 30 over-privileged SmartApps were
developed as the misbehaving SmartApps for evaluation. Therefore,
the dataset used in our evaluation contains 30 benign SmartApps
and 30 misbehaving SmartApps. We recruited 3 volunteers to sim-
ulate residents of the home. For each SmartApp (including both
of the benign and over-privileged versions), the related devices
were manually triggered for 20 times by the volunteers during 20
minutes. During this period, HoMonit continuously monitors the
wireless channel and detects the misbehaviors in real-time.

The detection results are shown in Fig. 10. Here a true positive
(TP) is defined as a correctly labeled misbehaving SmartApp; a true
negative (TN) is defined as a correctly labeled benign SmartApp;
a false positive (FP) is defined as an incorrectly labeled benign
SmartApp; and a false negative (FN) is defined as an incorrectly
labeled misbehaving SmartApp. Therefore, the true positive rate
(TPR) is defined as TP/(TP+FN); the true negative rate (TNR) is
defined as TN/(FP+TN). As shown in Table 4, the average TPR
(over 40 ZigBee SmartApps) is 0.98 in detecting over-privileged
accesses, with a standard deviation of 0.03; the average TNR of
ZigBee SmartApps is 0.95, with a standard deviation of 0.07. The
detection of Z-Wave SmartApps achieves similar TPR and TNR,
which are 0.98 and 0.92, respectively.

The major reason for failed test cases is packet loss and a few
unexpected wireless traffic which influence the event inference.
Besides, accidental signal reception delay will break the consistency
of frames for a device event, which may result in a false alarm for
normal SmartApps.

7.3 Detection of Event Spoofing

We first developed event-spoofing versions of the benign Smart-
Apps by adding malicious code to cause unintended operations.
Specifically, the attackers exploit the insufficient event protection
of SmartThings to spoof a physical device event and trigger the
SmartApps which subscribe to this event. For example, Flood Alert
is a SmartApp which triggers a siren alarm when the water sensor
detects the wet state. In SmartThings, each connected device is
assigned with a 128-bit device identifier when it is paired with a
hub. Once a SmartApp acquires the identifier for a device, it can
spoof all the events of that device without possessing any of the
capabilities that device supports. By imitating the attacker, we raised
a fake water sensor event in the cloud with a malicious SmartApp,
causing the flood alert SmartApp to react and raise an alert.

In this experiment, we developed 30 misbehaving SmartApps
which spoofed the device events by modifying the same set of 30
benign SmartApps (see Table 3). We performed an experimental
evaluation on detecting the event spoofing attacks by following
similar procedures as the previous section. The detection results
are shown in Fig. 10. As shown in Table 4, the average TPR (over
40 ZigBee SmartApps) is 0.99 in detecting event spoofing, with a
standard deviation of 0.02; the average TNR of ZigBee SmartApps
is 0.95, with a standard deviation of 0.06. The detection of Z-Wave
SmartApps achieves a similar TPR and a slightly lower TNR, which
are 0.99 and 0.92, respectively.
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Figure 10: Detection result of 30 misbehaving SmartApps. The y-axis shows the TPR for each SmartApp.

Table 4: Detection result of misbehavior occurrence in SmartApps.

ZigBee (20 misbehaving + 20 benign) Z-Wave (10 misbehaving + 10 benign)

Over-privileged accesses Event spoofing Over-privileged accesses Event spoofing

TPR 0.98 (0.03) 0.99 (0.02) 0.98 (0.04) 0.99 (0.04)
TNR 0.95 (0.07) 0.95 (0.06) 0.92 (0.05) 0.92 (0.05)

8 DISCUSSIONS

Generality and applicability. Though this work mainly investi-
gates the SmartThings platform, the presented approach can be
potentially applied to other IoT systems. This is because, in IoT
environment, most of the devices are power-constraint and the
employed wireless protocols are light-weight. These light-weight
protocols are typically designed for low transmission rate and re-
duced data redundancy for low power consumption, which inher-
ently suffers from a low-entropy issue. Therefore, this feature gives
HoMonit the opportunity to extract wireless fingerprints for smart
devices by analyzing the packet size and timing information.

We also investigate IFTTT [29], an open-source platform com-
patible with SmartThings, to further demonstrate the applicability
and generality of HoMonit from both of the aspects of the wireless
fingerprints capturing and the DFA building. To capture the wire-
less fingerprints in IFTTT, we develop an Applet (a SmartApp in
IFTTT) that automatically turns on/off the Samsung SmartThings
Outlet via ZigBee protocols, as shown in Fig. 8(d). It is shown that
the events in IFTTT present the same wireless fingerprints as in
SmartThings (e.g., 50 ↓, 47 ↓, 47 ↓, 52 ↓ for switch.on or switch.off ).
The reason is that IFTTT employs the same lower-layer protocols
as SmartThings and the wireless traffic patterns are not affected by
their upper-layer platforms.

In addition to using common communication protocols, the
IFTTT Applets also share a similar control logic (i.e., if-this-then-
that), and adopt the standard user interfaces and app descriptions.
With these features, the proposed approach on DFA extraction from
closed-source SmartApps is expected to be also applicable to the
IFTTT platform. We will leave the study about other platforms (e.g.,
Amazon Echo, Google Home) as our future work.

Potentially some device manufacturers might change the wire-
less traffic patterns (e.g., normalizing the packet size) to prevent
privacy leakage from traffic analysis. Such a practice will also affect
the fidelity of HoMonit. In IoT settings, the previous literature have
demonstrated the applicability of utilizing some other side-channel
information (e.g., power consumption [39], voltage output [11]) for
misbehavior detection. In other research domains (e.g., Botnet de-
tection), there also exist a large body of advanced spatial-temporal
traffic statistical analysis tools [25]. HoMonit needs to integrate
with these methods to further improve its detection accuracy.

Privacy consideration. HoMonit leverages side-channel analy-
sis to monitor SmartApps from encryption traffic. However, side-
channel information leakage is a double-edged sword. It not only
enables our detection of misbehaving SmartApps, but may also
allows an attacker who can place a wireless sniffer in the proximity
of the smart devices to launch inference attacks to learn private
information of the residents.
• Daily routines: For example, Good Night is a SmartApp that
changes its mode when there is no human activity in the home
after some time at night time. The attacker can spy on the vic-
tim’s daily activities and learn his sleeping patterns by monitor-
ing this SmartApp’s behavior.

• Home occupations: For example, a SmartApp named Vacation
Lighting Director deceptively turns on/off lights while the resi-
dents are away, which, however, can be detected by inferring the
existence of such a SmartApp. We found more than 15 Smart-
Apps in our dataset leaking home occupation information.

• Health conditions: For example, Elder Care: Slip & Fall monitors
the behavior of the aged people. Detecting such a SmartApp
may leak the ages and the health condition of the residents.
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These privacy concerns, however, may not be sufficient to mo-
tivate drastic changes in the wireless protocol design. Although
enforcing packet length padding will make most wireless packets
indistinguishable, the changes of the hardware design, increases
in power consumption, and issues of backward compatibility are
major obstacles in the practical adoption of a side-channel-resistant
protocol. Moreover, the strong requirements of physical proximity
in such attacks also make the threat less concerning. As such, one
of the key enabling factors of HoMonit—side-channel leakage in
the encrypted wireless traffic—is likely to remain unchanged in the
foreseeable future.

Generating DFAs from benign SmartApps. The core idea of
HoMonit is to compare the SmartApp activities inferred from
the encrypted traffic with the expected behaviors dictated by their
souce code or UI. Therefore, acquiring the DFA of the benign ver-
sion of the SmartApp (or the groundtruth DFA) is critical for the
successful deployment of HoMonit. The simplest way to obtain
such groundtruth DFAs is to download it from the official app
market, if assuming the market operator has performed a good
job in vetting all published SmartApps. Otherwise, a trustworthy
third-party must step in to vouch for benign apps, which will help
bootstrap HoMonit.

Double-sending attacks. Because some device events may have
the same wireless fingerprints, such as switch.on and switch.off of
Samsung SmartThings Outlet (see Table 2), HoMonit has to keep
track of the current state of the device, which can be used in turn
to infer the content of event. However, a potential attack strategy is
that a SmartApp may intentionally send the same commands twice
to mislead HoMonit. We call this type of attack a double-sending at-
tack. For example, a misbehaving SmartAppmay send the command
switch.off twice, hoping that they will be confused with a sequence
of switch.off and switch.on. However, in reality, this double-sending
attack does not work as the communication protocol of Smart-
Things devices is designed to deal with duplicated messages. We
performed the following experiments: (1) two events [switch.on,
switch.off ] were sent by the SmartApp, (2) two events [switch.on,
switch.on] were sent by the SmartApp. In both experiments, the
initial state of the Outlet was set as off. The first experiment rep-
resents a normal case and the second represents a double-sending
attack. As shown in Table 2, the collected traffic patterns are dif-
ferent: The packets in the first cases are (50 ↓, 47 ↓, 47 ↓, 52 ↓),
followed by (50 ↓, 47 ↓, 47 ↓, 52 ↓). In comparison, those in the
second are (50 ↓, 47 ↓, 47 ↓, 52 ↓), followed by (50 ↓, 47 ↓). We spec-
ulate this is because that, under double-sending attacks, when the
hub receives the second switch.on command from the SmartApp,
as the hub knows the outlet’s status (on), it regards this command
as duplicated, and alters the message sent to the outlet.

Interleaving SmartApp events. It is possible that multiple Smart-
Apps may run simultaneously, rendering some events interleaved
with one another. HoMonit can correctly identify each of the
events even when they are interleaved. Moreover, in most cases,
HoMonit can leverage these identified events to correctly infer
the DFA transitions. One exception is that when more than one
SmartApp operates the same device simultaneously. HoMonit may
have difficulty in differentiating the two SmartApps. We admit this

Table 5: Wireless Fingerprints in normal and double-

sending attack scenarios.

Case Event Fingerprint

Normal 1st: switch.on 50 ↓ 47 ↓ 47 ↓ 52 ↓

2nd: switch.off 50 ↓ 47 ↓ 47 ↓ 52 ↓

Attack 1st: switch.on 50 ↓ 47 ↓ 47 ↓ 52 ↓

2nd: switch.on 50 ↓ 47 ↓

is a limitation of HoMonit. In our future work, we will investigate
other means to address this problem.

Alerting users after detection. When detecting any misbehav-
ior of a specific SmartApp, HoMonit can alert the users simply
through text message, or work together with existing home safety
monitoring tools (e.g., Smart Home Monitor [62] in SmartThings)
to take the immediate actions. For example, HoMonit can generate
different alerts based on the detected scenarios such as home unoc-
cupied, occupied or disarmed. In addition, HoMonit can serve as a
building block for enforcing user-centric [66] or context-based [34]
security policies and integrate with these previously proposed sys-
tems to interact with users.

Other issues. Incorrectly constructed DFAs from the closed-source
apps will impact the detection accuracy. In practice, one potential
strategy to avoid such errors is to perform additional validation
before deploying HoMonit to end users. For instance, the service
provider could manually trigger sensors to interact with the Smart-
Apps and check if the observed state transition conforms to the
extracted DFAs.

9 RELATEDWORK

Security of smart home platforms. Closest to our work is a
study by Fernandes et al. [19], which performed an empirical secu-
rity evaluation on SmartThings framework and identified several
design vulnerabilities. Follow-up studies have proposed systems to
enforce information flow control [20], context-based permission
systems [34], and user-centered authorization and enforcement
mechanisms [66]. Demetriou et al. [17] employed a monitor app
on smartphones and a security patch on the router to enforce fine-
grained access control towards IoT devices in home area network.
By comparison, HoMonit leverages side-channel inference tech-
niques to monitor misbehaving SmartApps from encrypted traffic,
without any modification of the existing infrastructure.

Security of smart home protocols. Zillner et al. [74] and Lomas
et al. [40] highlighted several security risks in ZigBee implementa-
tions. Fouladi et al. [22] analyzed the Z-Wave protocol stack layers
and discovered a vulnerability in the AES encryption in a smart
lock. Weak authentication mechanisms in Bluetooth have been
studied in previous studies [4, 5, 27].

Security of smart home hubs. Lemos et al. [36] analyzed the
security of three smart home hubs: SmartThings, Vera Control [13],
and Wink [70]. Their study reveals several vulnerabilities in these
hubs. Similarly, several currently available IoT hubs were investi-
gated in [24] and [69], and numerous security flaws were identified.
Simpson et al. [54] proposed a central security manager that is built
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on top of the smart home hub and positioned to intercept all traffic
to mitigate security risks.

Security of IoT devices. Researchers have identified many secu-
rity flaws in off-the-shelf devices for smart home. Some devices
mistrust devices on the same LAN, leaving them vulnerable to a
local adversary [47, 50]. Moreover, Ur et al. [67] studied access
control systems for commercial smart devices and found that all
devices lack the mechanisms of access monitoring, therefore users
cannot identify who has accessed their devices. End-to-end authen-
tication [41] and access control [35] are effective in solving this
LAN mistrust issue. Besides, devices tend to suffer from emerging
unauthenticated control signals. For example, an adversary can con-
trol a smart TV with a speaker playing synthetic voice commands
[44]. Ho et al. [27] described how a Bluetooth smart lock can unlock
mistakenly due to improper trust. Various defense approaches focus
on device attestation [6, 27, 68]. Lastly, implementation flaws cause
severe attacks against smart home devices. For example, Oluwafemi
et al. [49] demonstrated that non-networked devices such as com-
pact fluorescent lamps might be connected to networked devices
and hence can be attacked by remote adversaries. Most of the access
control solutions [16, 33, 47, 55, 72] can partially solve these imple-
mentation flaws. Different from these previous works, our method
infers the working logic of the smart home based on a combina-
tion of wireless side-channel information and the characteristics
of smart home platform (i.e., the semantics of device handlers and
SmartApps).

Wireless traffic analysis. Side-channel leaks due to network packet
timing, sizes, sequences and so on have been discussed extensively
in prior studies [18, 21, 26, 31, 37, 38, 43, 51, 64, 73]. Particularly,
Chen et al. [10] found that an eavesdropper can exploit such type
of side channel information to infer surprisingly detailed sensitive
information from web applications despite encryption protection.
Brumley et al. [9] presented a timing attack based on packet timing
and sizes against OpenSSL that extracts RSA secret keys. Wright et
al. [71] showed that the lengths of encrypted VoIP packets can be
used to identify the phrases spoken within a call. Formby et al. [21]
proposed two timing-based device type fingerprinting methods
in industrial control system environments. Different from these
works, we concentrate on the new emerging smart home platform
— SmartThings.

10 CONCLUSION

In this paper, we present HoMonit, an anomaly detection sys-
tem for smart home platforms to detect misbehaving SmartApps.
HoMonit leverages the side-channel information leakage in the
wireless communication channel—packet size and inter-packet
timing—to infer the type of communicated events between the
smart devices and the hub, and then compares the inferred event
sequences with the expected program logic of the SmartApps to
identify misbehaviors. Key to HoMonit includes techniques to
extract the program logic from SmartApps’ source code or the
user interfaces of SmartThings’ mobile app, and automated DFA
construction and matching algorithms that formalize the anomaly
detection problem.
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