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Abstract—Generative models have garnered significant interest
in the realm of machine learning but are costly to produce and
face growing regulatory constraints, requiring resource-heavy
training and collaboration with various stakeholders, especially
data providers. Such collaborative environments have given rise
to a new threat known as model hijacking attacks. Adversaries
can tamper with the training process to embed a hidden task,
so that train/hijack high-end models at minimal costs or even
sidestep regulations. In this paper, we extend the scope of model
hijacking from classifiers to generative models by introducing the
first model hijacking attack tailored for Generative Adversarial
Networks (GANs), namely Neeko. Neeko is based on a novel U-
Net-based Disguiser and allows a compromised GAN to generate
authentic-looking images from its original distribution, but when
downscaled, these images are visually changed to be from the
hijacking dataset distribution. Through experiments on different
image benchmark datasets, we demonstrate the efficacy and
stealthiness of Neeko. Neeko poses security and accountability
risks associated with training public GANs on potentially mali-
cious or illegal datasets and raises concerns about evading those
regulations addressing deepfakes and synthetic images.

Index Terms—GANs, model hijacking, data poisoning

I. INTRODUCTION

While GANs hold immense promise, their training pro-
cess presents inherent vulnerabilities. The acquisition of vast
amounts of data and substantial computational power offers
adversaries an attack surface to exploit. A novel attack, known
as the model hijacking attack [1], [2], capitalizes on this vul-
nerability. By subtly poisoning the training dataset, adversaries
can implement an additional, often malicious, hijacking task
in the target model. However, the previous model hijacking
attacks only work on classifiers instead of generative models.
In this paper, we fill this gap by introducing the first model
hijacking attack against GANs, namely Neeko.
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Neeko is a training time attack and adopts the same
threat model as data poisoning attacks and previous model
hijacking attacks [1]–[4]. Concretely, the adversary conducts
data poisoning to repurpose a target GAN designed for a
hijackee image generation task (original task) to be able to
complete a hijacking image generation task (the adversary’s
task). The hijacked GAN attacked by Neeko is capable of
seamlessly generating synthetic images from both the original
and hijacking datasets’ distributions. To maintain the covert
nature of data poisoning during the training phase, Neeko
needs to preserve the utility of the target GAN in its orig-
inal image generation task, while ensuring that camouflaged
training samples (used to poison the training set) are visually
highly similar to clean training samples.
Motivation: The adversary can hijack a target model to
perform an unintended image generation task by using Neeko,
without the model’s owner noticing. This poses accountability
risks for the model owner, as it could lead to allegations
that their model is providing illegal or unethical services. For
example, an adversary could hijack a benign GAN, initially
designed for generating facial images, to produce synthetic
pornography pictures. In short, an adversary can hijack a
publicly available GAN (especially those high-quality and
expensive GANs), leading to the GAN providing illegal or
unethical services, unintentionally implicating the hijacked
GAN’s owner. Neeko also poses the risk of parasitic comput-
ing. The adversary could exploit a publicly accessible GAN
for their own applications, bypassing the need to train and host
their own GANs, thus saving on the associated costs.
Methodology: The objective of the Neeko is two-fold: Firstly,
to allow a GAN to execute the adversary’s hijacking agenda
seamlessly and stealthily, and secondly, to ensure the GAN
retains its initial functionality. We initiate Neeko using an
image scaling method via quadratic programming (QP), em-
bedding smaller “hijacking” images within larger “original”
ones. The camouflaged images, visually similar to the original,
reveal the hijacking images upon downscaling. This technique
is used to create a camouflaged dataset for training the target



GAN, allowing it to learn the original task explicitly and learn
hijacking tasks implicitly at the same time. The compromised
GAN then could produce images from both the original
and the camouflaged dataset’s distributions. The QP-based
Neeko is effective but very time-consuming, so we additionally
introduce the Disguiser, a U-Net-based model inspired by
diffusion model advancements. This model can implement
functions similar to QP but is much more efficient.
Evaluation: We evaluate Neeko using various datasets: for
original tasks, we use medical (NIH Chest X-ray 14),
human facial (CelebA, FFHQ); and for hijacking tasks, we
use cartoon avatars (Konachan, Anime) and numerical digits
(MNIST). The evaluation focuses on the attack’s stealthiness
(similarity between the camouflaged and original images),
efficiency (time consumption), and the hijacked GAN’s utility
on both tasks. The results of extensive experiments demon-
strate the good performance of Neeko across these criteria.
For instance, using MNIST to hijack a StyleGAN v3 trained
on CelebA, both QP and Disguiser methods produce highly
stealthy camouflaged training images, as reflected by high
PSNR values (> 25 dB). The Disguiser significantly cut attack
time by over 90% compared to QP. For the synthetic images,
Neeko achieves the FID score of 4.99 which is only a minor
increase of 1.36 compared to training a clean GAN, showing
that the hijacked GAN maintains high utility. Defense testing
reveals Neeko’s covert nature, posing detection challenges for
even knowledgeable defenders, highlighting its stealth and
difficulty to detect.

In summary, we make the following contributions:
• We extend model hijacking to generative models by

proposing the first model hijacking attack against GANs.
• We propose a new approach to implement model hijack-

ing attacks, specifically through efficient Disguiser-based
image scaling attacks.

• Our comprehensive empirical experiments reveal the ef-
ficacy of our proposed attack methods.

II. PRELIMINARIES

A. Image Scaling Attack

Image scaling attacks [5], [6] are training time attacks that
target the preprocessing phase of machine learning workflows.
These attacks alter input images by quadratic programming
(QP) so that when the images undergo the preprocessing steps,
such as downscaling, their appearance is drastically changed.
This enables adversaries to discreetly embed malicious images
within seemingly benign target ones.

B. Model Hijacking Attack

Model hijacking attacks [1], [2] are another training time
attack wherein adversaries manipulate a target model’s training
dataset (original dataset) to embed an auxiliary, and possibly
malicious, task. The adversary has a hijackee dataset which
follows a similar distribution to the original dataset. The origi-
nal task of the target model is termed the hijackee task, while
the adversary’s added dataset/task is termed the hijacking
dataset/task. To carry out the model hijacking attack covertly,

first, the hijacking dataset is camouflaged. This camouflaged
dataset visually mirrors the hijackee dataset yet incorporates
the features of the hijacking dataset. The camouflaged dataset
is then used to poison the target model’s training, allowing it
to perform its original and hijacking tasks simultaneously. We
summarize the related terms in Table I in the appendix.

However, the techniques in previous works [1], [2] do not
work in the generative models. For image generative models,
the generated synthetic images must be recognizable to human
beings. The technique in [1] targets the image classifiers and
can only conceal certain features of the hijacking samples
in the latent space. Such features are recognizable for clas-
sifier models but not recognizable for human vision. Another
technique in [2] focuses on the natural language processing
(NLP) domain classification tasks, making their methodologies
unsuitable for direct application in the field of GANs.

In this work, we broaden the applicable scope of model
hijacking to generative models, specifically GANs. Given a
hijackee image, human vision can only recognize its pixels and
is unable to discern its features in the latent space. Therefore,
the key to our approach lies in manipulating the pixels of the
hijackee image rather than the features in its latent space. We
achieve this by proposing Neeko, which uses image scaling
attacks to manipulate the pixels instead of the features in latent
space. We also explore different approaches to enhance the
efficiency of Neeko, including the U-Net-based Disguiser.

C. Threat Model

Our approach adopts a very classical threat model, which is
the same as the previous data poisoning attacks and model
hijacking attacks [1]–[4], assuming no prior knowledge about
the target GAN and only the ability to poison its training
set. We assume the presence of a hijackee dataset, which
follows a similar distribution to the GAN’s training dataset.
The hijacking dataset is embedded in the hijakee one. After
successfully hijacking a GAN using Neeko, the adversary can
easily obtain the hijacking synthetic images by down-sampling
the camouflaged synthetic images with corresponding scaling
methods. Note that, not all synthetic images can be down-
scaled to resemble the hijacking ones, as some will appear as
downscaled versions of the original images.

III. METHODOLOGY

A. General Attack Pipeline

To hijack the target GAN, the adversary first selects a hijack-
ing dataset to implement in the target GAN. They also obtain
a hijackee dataset to embed the hijacking dataset, enhancing
the stealthiness of the Neeko. The hijackee dataset should
obey the similar distribution of the original training dataset
of the target GAN, or even be part of the original dataset.
The hijacking dataset is then camouflaged within the hijackee
dataset, creating a camouflaged dataset. This camouflaged
dataset is then concatenated with the clean original dataset
to create a poisoned dataset. Once the training of the target
GAN is completed, the target GAN is hijacked.
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Fig. 1: Overview of Neeko using Disguiser. Neeko can
stealthily poison the training dataset of a target GAN using
banned images from an adversary, thereby causing the GAN
to generate banned synthetic images.

The hijacked GAN could generate two kinds of synthetic
images, including clean synthetic images and camouflaged
synthetic images. The adversary can obtain hijacking synthetic
images by downsizing the camouflaged synthetic images gen-
erated by the hijacked GAN.

B. Neeko Using Quadratic Programming (QP)

Directly blending the hijacking images with hijackee images
is not covert and could lead to the mode collapse or failed
training of GAN. To overcome the limitations, we employ the
typical QP-based image scaling attack [5], [6] to embed the
hijacking images into the hijackee dataset.

The adversary seeks a minimal perturbation ∆ of the
hijackee sample S, such that the downscaling S(·) of the
camouflaged sample C = ∆+S produces an output similar to
the hijacking sample T . Goals are summarized as the following
optimization:

min(∥∆∥22), s.t.∥S(S +∆)− T ||∞ ≤ ε

Additionally, each pixel value of C needs to remain within the
fixed range (e.g., [0, 255] for 8-bit images). All variables are
known except for ∆ and ε. ∆ represents the desired output,
while ε is the predetermined threshold. This problem can be
solved with quadratic programming [6]. When successful, the
adversary can obtain a camouflaged image C that bears a
resemblance to the hijackee sample but matches the hijacking
sample after downscaling operations.

While this methodology enhances the stealthiness of the
adversarial attack, it requires lots of computational time. For
example, the adversary needs to spend about 4,985 minutes
processing 36,000 hijacking images as shown in Figure 3a.
This long processing time constitutes a significant hindrance
for potential adversaries, particularly those operating under
time-sensitive conditions.

C. Neeko Using Disguiser

To improve the efficiency of Neeko, we propose a novel U-
Net-based model, namely Disguiser, to replace QP. Inspired by
recent advancements in diffusion models [7]–[9], the Disguiser
utilizes a U-Net architecture to efficiently camouflage the
hijacking dataset using the hijackee dataset.
Overview: We present the overview of Neeko using Disguiser
in Figure 1. In the initial phase, the adversary focuses on

xhijacking
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Scaling
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Hijacking-resolution 
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Fig. 2: Overview of Disguiser training.

training a Disguiser. This Disguiser takes images from both
the hijackee dataset D′

o and hijacking dataset Dh as two
inputs. It is designed to subtly modify the hijackee images
by embedding pixels from the smaller hijacking images into
them. The output is a camouflaged image that, when viewed
at high resolution, remains visually indistinguishable from
the original hijackee image. However, when the camouflaged
image undergoes down-sampling, it has a visual similarity
to the hijacking sample. After producing a sufficient number
of camouflaged images with the Disguiser, the adversary
compiles these into a camouflaged dataset, denoted as Dc.
This dataset is then merged with the original dataset, Do, to
craft a poisoned training set to poison the training of the target
GAN. Once the GAN is trained on this poisoned dataset, it
becomes successfully hijacked.

Hijacked GANs exhibit the ability to generate two unique
kinds of synthetic images. The first kind consists of clean
synthetic images that closely mirror the original and hijackee
datasets distributions. The second kind involves camouflaged
synthetic images. Although they closely match the hijackee
dataset in high resolution, their visual appearance changes
to align more with the hijacking dataset distribution when
downscaled.
Disguiser (Md): The Disguiser is a U-Net-based model
designed to integrate images from the hijacking dataset and
the hijackee dataset. It takes two images as input: one from
the hijacking dataset (xhijacking ∼ Dhijacking) and the other from
the hijackee dataset (xhijackee ∼ Dhijackee). These images are
concatenated, resulting in a single input with six channels.
To handle differing dimensions, an upscaling function Fup(·)
is used to match the size of the hijacking dataset. The con-
catenated image is then passed through the Disguiser, which
scales it down to a camouflaged image xcamouflaged with three
channels. The goal is for xcamouflaged to visually resemble the
hijackee image while exhibiting similarity to the hijacking
image when downscaling.

The U-Net architecture’s interpolation capabilities make it
more effective in reproducing intricate details while incorpo-
rating relevant information from both datasets, compared to a
simple encoder-decoder model used in previous works [1].
Hijacking-resolution Visual Loss (Lhijacking): Similarly, to
ensure visual similarity between the downscaled output of the
Disguiser and the hijacking sample, we utilize the hijacking-
resolution visual loss. This loss is calculated by measuring the



L1 distance between the hijacking samples and the downscaled
version of the Disguiser’s output (S(xcamouflaged)):

Lhijacking = ∥S[xcamouflaged]− xhijacking∥1
Hijackee-resolution Visual Loss (Lhijackee): To ensure visual
resemblance between the output of the Disguiser (xcamouflaged)
and the hijackee sample, we use the hijackee-resolution visual
loss. This loss is also computed using the L1 distance metric:

Lhijackee = ∥xcamouflaged − xhijackee∥1
Disguiser Training: The training process is shown in Figure 2.
To train the Disguiser, we use a weighted combination of
two visual loss components: hijacking-resolution and hijackee-
resolution visual losses.

Ls = λLhijackee + (1− λ)Lhijacking

Here, λ controls the weight assigned to each loss term, deter-
mining their relative importance in the overall optimization
objective. During training, in each epoch, random pairs of
samples are created by pairing images from the hijacking
dataset with those from the hijackee dataset. This random
pairing strategy ensures the generalization of the Disguiser. To
recap, prior to pairing, the hijacking samples are upsampled
to match the dimensions of the hijackee samples. The upsam-
pled hijacking sample is then concatenated with the hijackee
sample, forming the input for the Disguiser. The output of the
Disguiser, along with its corresponding hijackee and hijacking
samples, are used to compute the Ls. Note that the loss of
the Disguiser is independent of the target model, making it
applicable to various settings.
Neeko Execution: After training the Disguiser, the adversary
uses it to create a camouflaged dataset by camouflaging the
hijacking dataset with the hijackee dataset. This camouflaged
dataset is then used to poison the training dataset of the
target GAN, resulting in a hijacked GAN. The adversary can
query the hijacked GAN to obtain synthetic images resembling
samples from the hijackee dataset or the original datasets.

To obtain hijacking fake images, the adversary downscales
the generated images. However, since the GAN is trained
on both clean and camouflaged datasets, the generated fake
images consist of a mixture of clean fake images and clean
hijacked data. As a result, not all downscaled fake images
align with the hijacking dataset distribution.

IV. EVALUATION

A. Evaluation Settings

Datasets: The hijackee datasets and original datasets used in
experiments are derived from diverse benchmark datasets, in-
cluding CelebA [10], FFHQ [11], and NIH Chest X-ray
14 [12], for face and medical images. For the hijack-
ing datasets, we use MNIST [13] for handwritten digits,
Konachan Avatar [14], and Anime Faces [15] for
anime faces. The training sizes are 70k for FFHQ and
120k for CelebA and NIH Chest X-ray 14. We set
the scaling factor α = 8.0 from image scaling attacks as

recommended [5], [6], which means the length and width
of the hijacking image are both 1/8 of the original. The
resolutions of hijacking datasets are 162 and 322 while those
of original/hijackee datasets are 1282 and 2562. Under this
setting, the corresponding artifacts in the camouflaged images
are considered to be invisible. The poisoning rate is 30%.
Models: We use the cutting-edge StyleGAN v3 as our target
GAN model for the main experiments. GANs are trained from
scratch with the basic configurations. In the main experiment,
the Disguiser architecture is based on U-Net with ResNet18
encoder and decoder layers, taking inputs with 6 input chan-
nels and producing output images with 3 channels. We also
add a 4-layer autoencoder-based Disguiser, which has the same
architecture as the camouflager [1] but different loss functions,
to compare. We train the Disguiser on a randomly sampled set
of 5k hijacking-hijackee image pairs, following Section III-C.
The weight λ is set to 0.5.
Metrics: We apply the peak signal-to-noise ratio (PSNR)
to measure the similarity between camouflaged and original
samples, with PSNR values above 25 dB indicating strong
similarity, as suggested by previous research [6]. We calculate
the mean and standard deviation of PSNR across the entire
training dataset to assess Neeko’s stealthiness by evaluating
artifact visibility in camouflaged samples. For attack efficiency,
we measure the time to generate the camouflaged dataset.

We use the Fréchet Inception Distance (FID) metric for
evaluating hijacked GANs’ performance [16], despite its
known sensitivity to scaling [17], due to the absence of a better
alternative. To distinguish between clean and camouflaged
fake images produced by the hijacked GANs, we use a
classifier with a slightly adjusted score threshold of 0.60 for
greater accuracy, reducing the impact of misclassification. We
compute three types of FID scores for hijacked GANs: original
FID (clean training images vs. synthetic images), stealth FID
(camouflaged and clean training images vs. synthetic images),
and hijacking FID (down-sampled camouflaged training im-
ages vs. down-sampled camouflaged synthetic images). These
metrics provide insights into the utility, stealthiness, and
efficacy of the hijacked GANs during their training phase.
Other Settings: We use scaling methods in PyTorch and
apply the nearest neighbor method in main experiments.
Compute resources are detailed in Table II in the appendix.

B. Evaluation Results

The attack time and PSNR of camouflaged samples are
shown in Figure 3a. The target GAN is trained on the poisoned
dataset, with FID metrics reported in Figure 3b, and visual
examples in Figure 4.

Experimental results confirm high stealthiness for both
QP-based and Disguiser-based Neeko. For example, hijack-
ing CelebA 2562 with Konachan 322 using QP achieves
PSNRs above 25 dB (Figure 3a) and a stealth FID of 3.79
(Figure 3b). The clean fake image FID increases by only 1.30,
preserving high-quality camouflaged images. Similar trends
are observed with Disguiser-based Neeko. While the hijacking
FID is higher due to previously discussed factors, qualitative
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Fig. 3: Quantitative results of Neeko with different scaling
and attack methods: the hijacking dataset is Konachan 322

and the hijackee dataset is CelebA 2562 (size: 120k, 30%
camouflaged). Methods outside the bracket are attack methods,
and those inside are the corresponding scaling methods.
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Fig. 4: Samples of camouflaged synthetic images output
by hijacked GANs with different attack methods and scal-
ing methods: the hijacking dataset and hijackee dataset are
Konachan 322 and CelebA 2562, respectively; the methods
outside and inside the bracket are the attack methods and the
corresponding scaling methods, respectively.

results (Figure 4) indicate good image quality for the hijacking
task. More samples are in Figure 8 of the appendix.

Our results also show that the novel Disguiser-based attack
is much more efficient than the QP-based. Detailedly, training
a U-Net-based Disguiser usually requires less than 300 min-
utes, and camouflaging 36k images usually takes less than 110
minutes. Compared with the QP-based attack (approximately
4,985 minutes), Disguiser could save over 90% less time to
generate camouflaged samples.

C. Hyperparameters

We omit image scaling attack hyperparameters, which are
extensively discussed in prior works [5], [6], and focus only
on those relevant to Neeko.
Dataset Pairs: We test Neeko using Disguiser (U-Net-based)
on various dataset pairs, with PSNRs and FIDs detailed in Fig-
ure 5a and Figure 5b. Lower bounds of PSNR always exceed
25 dB, showing good stealthiness during training. Hijacked
GAN performance varies by dataset pair. Minimal original
FID increases (≤ 1.79) occur with simple hijacking tasks
(e.g., MNIST) or similar datasets (e.g., Konachan hijacking
CelebA). For complex, dissimilar tasks, metrics degrade, with
original and stealth FIDs exceeding 20 and hijacking FID
reaching 69.93 (e.g., NIH Chest X-ray 14).
Disguiser Architectures: We compare the U-Net with the
autoencoder (AE) from [1]. During training, the PSNR drops
by 1.62 dB for the two-layer AE and 2.19 dB for the four-
layer AE compared to the U-Net (Figure 3a). The two-layer
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Fig. 5: Quantitative results of Neeko using Disguiser on
different hijackee and hijacking dataset pairs are reported. The
U-Net-based Disguiser and the Nearest scaling method are
used. The datasets in and outside the brackets represent the
hijackee and hijacking datasets, respectively.

AE preserves more details but adds noise, while the four-
layer AE reduces noise but loses detail. The U-Net balances
detail preservation and low noise, ensuring better stealth and
equivalent attack efficiency. In inference, the two-layer AE
improves the hijacking FID by 4.44 but increases the original
FID by 1.87. The four-layer AE shows no FID advantage.
Overall, the U-Net introduces smaller perturbations, making
the attack more covert than AE-based methods.
Scaling Methods: We evaluate the impact of scaling methods
(Nearest, Bilinear, Bicubic) using a U-Net-based Disguiser to
hijack a CelebA GAN with the Konachan dataset. Full
results are in Figure 3 and Figure 4.

Bilinear and Bicubic scaling reduce the PSNR lower bound
by 1.17 dB and 1.34 dB, respectively, compared to Nearest.
They also lower hijacking FID values by 21.88 and 23.61 but
increase the original FID by 2.65 and 2.79, reducing clean
fake image quality. Scaling methods with larger perturbations
(lower PSNR) enhance hijacking but harm GAN utility.
Target Models: We first evaluate Neeko on simpler GANs,
DCGAN [18] and WGAN [19], using MNIST 162 to hi-
jack CelebA 2562 GANs. DCGAN shows FIDs of 91.03
(original), 103.22 (stealth), and 47.51 (hijacking); WGAN
shows 69.33, 72.76, and 38.86, respectively. Note that these
large FID values are due to the weak performance of the
GANs compared to the state-of-the-art ones, e.g., a clean
DCGAN still results in 87.63. Despite their simplicity, Neeko
succeeds. We then apply Neeko to another advanced GAN,
StyleGAN v2 [20], achieving good results. Using MNIST to
hijack CelebA, the FID scores are: original 3.98, stealth 3.92,
and hijacking 6.01. With the Konachan dataset, the FIDs
are: hijackee 4.39, stealth 3.95, and hijacking 42.61. Visual
samples are shown in Figure 7.

D. Possible Defenses

Defenders are typically unaware of the adversary’s poison-
ing methods, and camouflaged samples resemble clean ones,
thus relying on unsupervised detection methods. We test three
popular unsupervised clustering algorithms (DBSCAN [21],
Agglomerative Clustering [22], and K-Means [23]) on a test
set of 200 CelebA images, 30% of which are camouflaged.
Experimental results show that DBSCAN fails to detect cam-
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ouflaged images, grouping all 200 images together. Agglom-
erative Clustering divides images into two clusters, but one
cluster has 30 out of 61 camouflaged images, and the other
has 70 out of 139. K-Means produces similar results. We
believe the small perturbation from Neeko makes unsupervised
methods remain clustering based on other features, like hair
color in CelebA, rather than those manipulated pixels.

Another possible defense against Neeko is applying de-
noising techniques to remove hijacking signals. We evaluate
the Non-local Means Filter, a highly effective blind denoising
method. Figure 9 in the appendix shows the impact of this
denoising on hijacked GAN images. The results indicate
reduced adversarial effects but also a significant loss of image
detail, as reflected by an FID of 43.03 for the denoised images.
This highlights the trade-off between defending against the
attack and maintaining image quality.

V. CONCLUSION

We present a novel model hijacking attack against GANs,
namely Neeko. This attack shares the same threat model
as the data poisoning attack. Neeko achieves the hijacking
generation task by merely manipulating the samples in the
training dataset, without altering the GAN’s inherent archi-
tecture or loss function. We explore various techniques for
the effective and covert execution of Neeko, including QP
and Disguiser. Notably, the U-Net-based Disguiser we propose
acts as a particularly efficacious methodology in terms of both
performance and efficiency. Comprehensive experimentation
demonstrates the capacity of Neeko to compromise GANs. Our
work highlights critical ethical and safety concerns, particu-
larly vulnerabilities in dataset governance. Adversaries could
exploit these flaws to subvert public GANs using illegal or
copyrighted data, posing risks of intellectual property viola-
tions. Additionally, we reveal the risks of parasitic computing,
where adversaries exploit GAN training processes to offload
their computational costs, potentially draining resources from
benign users.
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APPENDIX

A. Limitations and Future Work

Neeko shows promising prospects but also has limitations.
First, the hijacking task must be smaller than the original,
as larger hijacking images compromise the concealment of
Neeko. Second, generative tasks require more training data
than classification tasks, leading to a higher data poisoning rate
for effective hijacking. We set the data poisoning rate to 0.30,
compared to 0.17 for classifier attacks [1]. Attackers have to
balance hijacking performance and poisoning rate. Finally, the
FID metric may not fully reflect qualitative success, suggesting
the need for alternative metrics in future research.

B. Description of Terms

Here we detailedly describe the terms used in Neeko.

TABLE I: Description of different terms used in Neeko.

Term Definition

Neeko

Neeko is a champion in League of Legends. She
can blend into any crowd by borrowing the others’
appearances, which match the function of our Dis-
guiser. We borrow the champion’s name “Neeko”
to describe our proposed attacks.

Original Dataset The training dataset of the target GAN’s original
task.

Hijackee Dataset The dataset from the same distribution as the target
GAN’s training dataset.

Hijackee Samples Samples from the hijackee dataset. Usually, they
are at a big resolution.

Hijacking Dataset The training dataset of the adversary’s hijacking
task.

Hijacking Samples Samples from the hijacking dataset. Usually, they
are at a small resolution.

Camouflaged Dataset The modified hijacking dataset after being
stealthily embedded in a hijackee dataset.

Camouflaged Samples
Samples from the camouflaged dataset. They look
similar to the corresponding hijacking samples at
the large resolution but look similar to hijacked
samples at the small resolution.

Poisoned Dataset
The dataset the model will be trained on, i.e., the
concatenation of the camouflaged and the original
datasets.

Hijackee Resolution The resolution of the hijackee dataset. Usually, it
is larger than the hijacking resolution.

Hijacking Resolution The resolution of the hijacking dataset.

C. Compute Resources

We train all the Disguiser models and poison the images
on Server X10DRG-K80 with 1 Tesla K80 GPU. Then we
train all the StyleGANs on Server DGX-A100 with 2 NVIDIA
A100 GPUs. The servers’ details are shown in Table II.

TABLE II: Compute resource details.

Server Name Model CPU GPU RAM

X10DRG-K80 Supermicro
SYS-4028GR-TRT

Intel Xeon
E5-2697 Tesla K80 512 GB

DGX-A100 NVIDIA DGX
A100 (40G)

AMD Rome
7742 NVIDIA A100 1 TB

D. Additional Results of Experiments

In this section, we provide additional experiment results to
support our conclusions.
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(a) Visual samples of poisoned fake images output by the hijacked DCGAN
and WGAN: the hijacking dataset and hijackee dataset are MNIST 162 and
CelebA 642, respectively.
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(b) Visual samples of poisoned fake images output by the hijacked StyleGAN
v2: the datasets outside and inside the bracket are the hijackee dataset and
the corresponding hijacking dataset, respectively.

Fig. 7: Visual results of different target GANs: U-Net-based
Disguiser and Nearest scaling method are used; the first row
shows the visual appearances of the poisoned fake images at
the hijackee resolution and the second row shows those at the
corresponding hijacking resolution; the resolution correspond-
ing to each row is labeled on the left of the images.



(a) Quadratic programming and Nearest are used as the attack
method and scaling method, respectively.

(b) U-Net-based Disguiser and Nearest are used as the attack
method and scaling method, respectively.

(c) U-Net-based Disguiser and Bilinear are used as the attack
method and scaling method, respectively.

(d) U-Net-based Disguiser and Bicubic are used as the attack
method and scaling method, respectively.

Fig. 8: Visual samples of downsampled poisoned fake images: the hijacking dataset and hijackee dataset are Konachan 322

and CelebA 2562, respectively.
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Fig. 9: Visual appearances of poisoned fake images and the corresponding de-noised versions: the hijacking dataset and hijackee
dataset are Konachan 322 and CelebA 2562, respectively; the first row shows the visual appearances of the poisoned fake
images at the hijackee resolution and the second row shows those at the corresponding hijacking resolution; the resolution
corresponding to each row is labeled on the left of the images.
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